Showing posts sorted by date for query Wankel. Sort by relevance Show all posts
Showing posts sorted by date for query Wankel. Sort by relevance Show all posts

Sunday, July 9, 2023

Wankel

Wankel (pronounced wahng-kuh)

A type of rotary internal combustion engine, first produced 1961, named after its inventor, German engineer, Felix (aka Fritz) Wankel (1902-1988).

The Wankel engine is a type of internal combustion rotary engine, one of many based on the a rotary principle, the Wankel using an eccentric drive to convert pressure into rotating motion.  The design was conceived by German engineer Felix Wankel, an eccentric, though clearly gifted, self-taught engineer who was an early convert to National-Socialism (linked with a right-wing political movement in 1921) who joined the NSDAP (the National Socialist German Workers Party which would become the Nazi Party) the following year.  It’s important not to make too much of that, the party in its early days an aggregation of factions which were, literally more nationalist and socialist in character than anything like the racist and ultimately genocidal thing into which the Nazis evolved under Adolf Hitler (1889-1945; Führer (leader) and German head of government 1933-1945 & head of state 1934-1945). 

But an enthusiastic Nazi Wankel certainly was although that didn’t protect him from falling victim to the internecine squabbles which would beset the party to the very end, expelled from the party in 1932 after feuding with his Gauleiter (the regional party boss) who, after Hitler came to power in 1933, succeeded in having Wankel jailed although, under less unpleasant conditions that those tossed into concentration camps.  Indeed, while in prison, he was able to continue working on his rotary engine, a patent for which had been granted to him in 1929.

Felix Wankel admires a shaft.

Wankel though had friends in the party, one of whom approached the Führer, stressing the importance of the amateur engineer’s contribution to German industry and that proved enough to secure his release.  He worked on a variety of projects during the 1930s, some on contract for BMW but mostly for the military including on seals, something which years later would absorb much of his energy at that of many others.  Despite his efforts for the Reich, his attempts to rejoin the party were rebuffed but his friends did gain him the honorary rank of Obersturmbannführer (Lieutenant Colonel) in the Schutzstaffel (The SS (Security Squad or Section), originally Hitler's personal security detail which evolved into a vast party security apparatus and later a parallel army almost a million strong) although his career in the "black mist" wasn't long, Wankel expelled within two years.  The records were lost in the confusion of war so the reasons aren’t known but while it’s tempting to wonder just how ghastly one has to be to be thought too evil for the SS, given the lack of any subsequent punitive action against him, it’s likely he just lost out in another of the squabbles that were so common in the Nazi system, the structures of which actually encouraged internal conflict.

It didn’t stop the Nazi state funding his research including what he was then calling his “rotary motion engine” although progress was slow and slow for a reason, the fundamental flaw in the design not resolved until the 1950s when another engineer, less visionary but more practical, rectified the fault.  Wankel's rotating cul-de-sac was far from unique in wartime Germany, the interest of the regime in technical innovation and the gullibility of party officials drew cranks, con-men and inventors inspired and otherwise.  Among the projects which received interest and sometimes cash from the state was a “non-combustible” material called durofol (which would catch fire), a scheme to create liquid fuel from the roots of fir trees (which consumed three times as much energy as it produced), the production of alcohol from bakery fumes (apparently that one was quickly rejected), a “death ray” championed by notorious drunkard Reichsleiter Robert Ley (1890–1945; head of the German Labour Front 1933-1945), which turned out to be impossible to build or even test, a plan to turn the atmosphere into a conductive element using ionization (which at least has a theoretical basis even if impossible) and the mysterious “Gerloff miracle pistol”, the records for which were lost.  Compared to some of these, Wankel’s engine (which didn’t work) probably appeared quite promising.

Gleitkufenboot (skid boat).

Wankel had other projects too, one of which he would, like his engine, later revisit.  This was the Zischboot (Hiss boat), intended as a small, high-speed torpedo-boat for the navy, a kind of hydrofoil that used clusters of skis.  In the 1970s, Wankel would display a prototype (now called the Gleitkufenboot (skid boat)), powered by an impressively powerful Mercedes-Benz four rotor Wankel engine.  Wankel claimed not only was it impossible to capsize the boat but that it was unsinkable, a notable feature said to be borrowed from certain sea creatures, air-intake "nostrils" with flaps controlled by sensors to ensure no water could penetrate when driving through waves.

Wankel survived the war and suffered not greatly in the denazification process the allied occupation authorities ran to weed out the worst of the worst, his work as an engineer suggesting someone unpolitical and being expelled both from the party and the SS probably helpful in mitigation.  In that he was lucky; had the investigators dug deeper they would have discovered Nazi-era Wankel held some fairly unsavory views and had expressed them more than once.  In the new Germany, those opinions he either no longer held or kept to himself, in 1951 obtaining a position with NSU as a technical consultant.  NSU were interested in his rotary motion engine.      

1957 NSU Prinz.

NSU (the name an abbreviation of "Neckarsulm", the city in which the factory was located) began in 1873 as a knitting machine manufacturer which in 1886 branched out into the production of bicycles and so successful did this prove that by 1892, the knitting machines were abandoned, the factory converted wholly to the building of bicycles.  The first NSU motorcycles appeared in 1901 and were both popular and profitable, encouraging the company in 1905 to enter the potentially even more lucrative market for cars.  Between then and the end of World War II (1939-1945), there were ups and downs but NSU survived and, in December 1946, resumed building bicycles and motorcycles, commercial vehicle production starting in 1949.  These efforts proved successful and the company, by now a significant beneficiary of Wirtschaftswunder (the post-war German "economic miracle"), was by the mid-1950s the world’s largest maker of motorcycles and profitable enough for car production to resume in 1957.     

1958 NSU Prinz Sport.

The car was modest enough, tiny and powered by a 600 cm3 (37 cubic inch) air-cooled twin cylinder powerplant which was essentially two motorcycle engines joined by a common crankcase.  As was fashionable in small European cars of the era, the engine was at the rear, something which would prove a cul-de-sac, most manufacturers outside the Warsaw Pact soon convinced to abandon the idea.  That disenchantment actually extended to Porsche which had the 911’s replacement in production by the mid-1970s, only to find out just about every soul left on the planet who still thought rear-engined cars a fine idea were Porsche 911 buyers who insisted nothing else would do.  The customer being always right, the 911 survives to this day and that a rear-engined machine can be as well-behaved as 911s now are will be no surprise to those familiar with modern electronics but Porsche, remarkably, had engineered a high degree of predictability into its behavior even before computers were robust and fast enough to do the job.  In 1958, NSU didn’t face the same issues of high-speed handling, the new Prinz (Prince) having but 20 bhp (15 kW).  It was wholly utilitarian but suited to the times and sold well, national success (and growing incomes) meaning within a year, the idea of a more profitable up-market version became attractive.  Although little more than an Italian-styled body atop the existing underpinnings and never a huge seller, the Prinz Sport remained in production for a decade and its lightweight and slippery shape made possible an impressive top speed of 75 mph (120 km/h).  By 1968 over twenty-thousand had been built and it was the Prinz Sport NSU used as the basis for the world’s first Wankel-engined car.

The rotary engine, light, powerful and with few moving parts had interested NSU which saw the potential for motorcycles but they also quickly identified the fundamental flaw in the design which Wankel had never resolved: both rotor and rotor housing rotated, each on different axes, creating an assembly almost impossible to keep in balance as well as necessitating an additional housing.  While Wankel proceeded along his path, publicized by NSU in 1954, another NSU engineer, Hanns Dieter Paschke (1920-1999), unbeknown to Wankel, was developing his own version (KKM 57), displayed in 1957 as the DKM 54 at the NSU Research & Development Department in Versuchsabteilung.  Before long, the concept would be refined in that the single housing became static and only the rotor rotated, Wankel’s original vision intriguing but perhaps, even now, impossible to build as a practical working device and NSU devoted some years to making their version exactly that.  In 1964, it was released to the public.

1967 NSU Spider.

In 1964, the Western world was not so laden with rules and restrictions (for good and bad) and it was possible to sell for use on the public highways what were essentially prototypes in development and that the NSU Spider certainly was.  It was also a seen by NSU as an advertisement on wheels, a showcase not only for their upcoming models but also to encourage other manufacturers to buy licenses to produce their own Wankels, an option that would be exercised by many, including Alfa Romeo, Curtiss-Wright, General Motors, Daimler-Benz, Rolls-Royce and Mazda.  For whatever reason, BMW, Felix Wankel's Nazi-era employer, declined.  Citroën, an outfit with a reputation for the quirky, were enthusiastic enough to set up with NSU a Swiss co-venture to pursue the technology.  More than most, the French would come to rue the day they ever heard Wankel’s name.

Skoda (rear) engine bays, the conventional (piston) engine (left) vs the single-rotor Wankel (right).

Although the project never progressed beyond the prototype stage, the Czech manufacturer Skoda was apparently the first to have running vehicles with a rotary engine installed (a complete engine said to have been running as early as 1961) but in 1964, the NSU Spider was the first to go on sale.  It used a single-rotor, water-cooled engine and was easily distinguishable from the Prinz Sport because it was a soft top cabriolet, apart from which it was substantially the same car with only detail differences in styling and specification except it was offered only in red or white.  One other change was definitely apparent however, power had jumped to a heady 50 bhp (37 kW) at a surprisingly low 5,500 rpm, enough to propel the Spider to close to 100 mph (160 km/h) for anyone on the autobahn prepared to push the little machine to the limit.  Never expected to be a big seller, fewer than 2500 were built between 1964-1967, its purpose more to whet the public appetite for what NSU intended to be their entry into the burgeoning middle-class mass market.  Additionally, though not at the time discussed, the Spider’s engine, while at a stage of development beyond being a prototype, was not ready for release to a public using it in a wide variety of ways in different climates in different countries.  The Spider’s customers unwittingly were also NSU’s development test team, something which later in the century would become a handy business model for many software companies.

Given the specifications of the Wankel NSU would produce in the future, it may that the Spider’s single rotor powerplant wasn’t an ideal a test bed for the customers to debug but problems in design and the choice of materials were identified and, where possible, within the limits of metallurgy and the realities of economics the lessons learned were applied.  Nor was the Spider’s specification static, the experiences of the customers applied to improve not only longevity but also power, the later cars enjoying a slight increase in capacity, output now 54 bhp (40 kW) at 6,000 rpm, 4 bhp perhaps not impressing all but it was close to 10% more and although the factory didn’t claim any increase in attainable speed, the most recent Spider owners presumably got there a little more quickly.

1967 NSU Ro 80 (1967-1977).

If the spider had generated interest, the NSU Ro 80, released in 1967, was a sensation.  Even without the novelty of the rotary engine (without which all concede it would doubtless have been a success), it would have made quite an impact.  The body, which does not look out of place even in the twenty-first century, was a modernist masterpiece, trendsetting in a way the 1955 Citroën DS (often called the déesse (literally "goddess")) was just too extreme to be yet more aerodynamically efficient, the Ro 80’s drag coefficient (CD) of .354 just a fraction better than the French car’s .359.  Beneath the skin, the futurist vision continued, the efficient front-wheel-drive packaging in the vanguard of adoption by larger vehicles, four wheel disk brakes (inboard at the front), a semi-automatic transmission, power-assisted rack and pinion steering and all independent suspension.  Reviews upon release were sometimes ecstatic, the only criticism from some who found the interior austere but it was era in which only the most expensive German cars were fitted-out with much beyond the starkly functional; NSU’s designers looked to Le Corbusier and Gropius, not the Jaguar Mark X.

The Ro 80 won the 1968 European Car of the Year award and buyers seemed as impressed as the many journalists who voted NSU.  Out on the autobahns, the twin-rotor engine was a smooth, quiet and a delight to use, the slippery shape meaning the 113 bhp (85 KW) it generated from a comparatively small 995 cm3 (61 cubic inch) displacement allowed it to match the speed of cars with even three times the capacity, the turbine-like feel encouraging a disregard for the 6500 rpm redline which it seemed to exceed without complaint.  The honeymoon didn’t last.  Critics began to notice it was good to match larger six cylinder cars in performance but it came at the cost of a thirst many V8 owners didn’t suffer.  Nor was the Ro 80, so at home cruising at 100 mph (160 km/h) on the autobahn, quite as happy in the stop-start urban conditions where the modern German motorist was now spending much time, some finding the previously admired semi-automatic transmission clumsy to use, the experience jerky.  The Wankel engine didn't deliver much much low-speed torque and drivers had to adjust their technique; those used to the more effortless performance of the 2-3 litre engines most often found in this class of car found negotiating their commute through a succession of red traffic-lights harder work than before.    

Nothing is perfect and such was the appreciation of the Ro 80’s virtues these drawbacks may have been overlooked or at least endured but what couldn’t be forgiven was that the Wankel engines were frequently, numerously, rapidly and expensively failing and, being within the warranty period, it was NSU which bore the cost to repair or replace.  That was bad enough but the car was quickly gaining a reputation for unreliability and sales were falling, exacerbating the financial strain NSU was suffering from all the warranty claims.  Nor was the once profitable motorcycle business there to subsidise the four-wheel venture, production having ended in 1968 to allow the company to focus on the Ro 80.  The problems hadn’t been wholly unexpected, just underestimated; NSU’s engineers had warned the board the engine wasn’t yet ready for production and needed at least months more durability testing and development but, perhaps remembering the relatively smooth introduction of the Spider, and certainly seeking cash-flow, approval was given for a debut in 1967.

It wasn’t difficult to work out where the problems lay which was mostly in the high wear of the apex seals and consequent damage to the rotor housing.  Essentially, the seal failure destroyed the engine, necessitating a replacement and it was not uncommon for replacement engines also to fail and require replacement, again under warranty.  For a small company with limited resources, it was unsustainable and NSU was soon unviable, the takeover by Volkswagen in 1969 said to be a "merger with Audi" only an attempt to glue a veneer of corporate respectability on what was the takeover of a distressed competitor.  It was unfortunate.  In just about every way except the flawed engine, the Ro 80 was years ahead of its time and deserved to succeed.

1967 Mazda Cosmo.

The issue was the engine at that stage of its development given the metallurgy of the time rather than NSU because Mazda, which had in 1961 purchased a licence to produce the Wankel, were suffering the same problems in the Cosmo sports car, introduced also in 1967.  The Cosmo however, was a low-volume model and Mazda had other, profitable ranges on sale and so could absorb the cost of fixing failed Cosmos.  Mazda did seem to learn from the NSU experience however.  When they put the Wankel into volume production, the vehicles initially were offered either as a rotary or with a conventional piston engine, an approach which seemed promising but such was the fragility of the Wankel, even that had to be abandoned.  Mazda, after putting Wankels even into small trucks and busses, realised that for consumer vehicles, it was a niche product and restricted it to specialist sports cars.  The problems didn’t go away, but, for a while, they became manageable.

Mazda RX-7 (the Porsche 924-928 inspired second generation (1985-1992) model) in Lindsay Lohan's music video clip First (2005).

The Cosmo's spiritual replacement was the RX7, a two door coupé (there was a short run of roadsters in the second generation) built over three generations between 1978-2002.  With over 800,000 produced, it's probably still the machine most identify with the Wankel engine and was the car which came closest to gaining the mainstream acceptance which had eluded earlier models such as the RX-2 (Capella), RX-3 (Savanna) & RX-4 (Luce), probably because reliability had significantly improved and those buying relatively expensive sports cars were more tolerant of the higher fuel bill and in fairness, much of the competition offering similar performance returned fuel consumption which was little different.  It was replaced by the RX-8 which proved (thus far), the swansong for the Mazda rotary on the streets.     

1972 NSU Prinz 1200 TT.

Remarkably, Audi-NSU, although axing the outdated rear-engined Prinz range, maintained the troublesome Ro 80 in production and despite its thirst it survived even the first oil crisis which killed off so many others.  Although most of the old NSU manufacturing capacity had long been given over to the Audi production line, it wasn’t until 1977 the last Ro 80 was built, the decade’s total production of 37,000-odd a disappointment for a car expected to ship more than that every year.

Despite NSU’s takeover in 1969 in the wake of the problem, even in the early 1970s, many major manufacturers were still convinced the Wankel's many advantages would render the piston engine obsolete and embarked on large, and expensive, development programs.  In this they were encouraged by the legendary optimism and confidence of engineers who so often think any engineering problem can be solved with enough time and money.  However the problems, seal wear, emissions and high fuel consumption proved insoluble and the projects which hadn’t been abandoned didn’t survive the first oil crisis.  Apart from the odd small-volume independent, only Mazda persisted. 

Notable Wankel Moments

1974 Mazda Rotary Parkway 26 Minibus (1974-1976).

The Mazda Cosmo was shown only weeks after the NSU Spider. Twice the capacity of the NSU, it was much more ambitious and though also troubled, its low volume meant the rectification was manageable.  Only Mazda has produced Wankel engines in large quantities and they've offered the power-plant in sports cars, racing cars, sedans, coupés, station wagons, pick-up trucks & buses, the last two perhaps a curious place to put an engine not noted for its prodigious torque.  Others, with varying degrees of success, have put them in automobiles, motorcycles, racing cars, aircraft, go-karts, jet skis, snowmobiles, chain saws, and auxiliary power units.

1976 Mazda RX-5.

Even Mazda, which has at least partially solved most of the problems, currently don't have a Wankel in production; the last, used in the RX-8, unable to meet the latest EU pollution standards.  Despite this, Mazda claim to be committed to the Wankel and the factory say development is continuing, in 2016 showing the RX-Vision, hinting it could be on sale as early as 2020.  The COVID-19 pandemic put that at least on hold and concerns about CO2 emissions may mean the Wankel's historic automotive moment, which lingered for so long, may finally have passed so whether Mazda really solved the problem of toxicity may never be known. 

1975 HJ Mazda Roadpacer (HJ & HX, 1975-1977).

Even Holden fans, as one-eyed as any, don’t have fond memories of the HJ Premier.  Usually, all they’ll say is its face-lifted replacement, the HX, was worse.  Its engines strangled by the crude plumbing used in the era to reduce emissions, driving an HX wasn’t a rewarding experience so there might have been hope Mazda’s curious decision to use the HJ (and later the HX) Premier as their top-of-the range executive car, complete with a smooth two-rotor Wankel, might have transformed the thing.  That it did but the peaky, high-revving rotary was wholly unsuited to a relatively large, heavy car.  Despite producing less power and torque than even the anemic 202 cubic inch (3.3 litre) Holden straight-six it replaced, so hard did it have to work to shift the weight that fuel consumption was worse than when Holden fitted their hardly economical 308 cubic inch (5.0 litre) V8 for the home market.  Available only in Japan and sold officially between 1975-1977, fewer than eight-hundred were built, the company able to off-load the last of the HXs only in early 1980.  The only thing to which Mazda attached its name not mentioned in their corporate history, it's the skeleton in the Mazda closet but does have one place in history, the footnote of being the only car built by General Motors (GM) ever sold with a Wankel engine.

Mercedes-Benz C-111 (1968-1970 (Wankel versions)).

Although the C-111 would have a second career in the late 1970s in a series of 5-cylinder diesel and V8 petrol engined cars used to set long-distance speed & endurance records, it's best remembered in its original incarnation as the lurid-colored ("safety-orange" according to the factory) three and four-rotor Wankel-engined gullwing coupés, sixteen of which were built.  The original was a pure test-bed and looked like a failed high-school project but the second and third versions were both finished to production-car standards with typically high-quality German workmanship.  Although from the school of functional brutalism rather than the lovely things they might have been had styling been out-sourced to the Italians, the gullwings attracted much attention and soon cheques were enclosed in letters mailed to Stuttgart asking for one.  The cheques were returned; apparently there had never been plans for production even had the Wankel venture proved a success.  The C-111 was fast, the four-rotor version said to reach over 300 km/h (190 mph), faster than any production vehicle then available.

Herr Wankel’s personal R107 (350 SL) fitted with 4 Mercedes-Benz Rotor Wankel (KE-413).

Less conspicuously than the C-111s in lurid safety orange were the roadsters which Mercedes-Benz used as Wankel test-beds.  The first used the W113 (1963-1971) platform, remembered now as the first “pagoda” and while it would never have been suitable as a production car, it apparently wasn’t as unbalanced as the sole W113 fitted with the 6.3 litre (386 cubic inch) M-100 V8 used in the big 600 Grossers and the 300 SEL 6.3 which the test drivers described as "exciting but unstable".  Still, the Wankel W113 proved quite a bit faster than the 280 SL and as a proof of concept was judged a success.  The W113 though had never been intended to use anything but a straight-six whereas the successor W107 (1971-1989) was designed from the start with an engine bay and transmission tunnel which would accommodate either a V8 or the Wankel with its high central power take-off.  The W113 had used a three rotor unit (M 50 F) but R107 had four (KE-413) and delivered considerably more power than the 3.5 litre (215 cubic inch) & 4.5 litre (275) V8s used in the production models and not until the adoption of 5.0 (305) & 5.5 (339) V8s in the 1980s would the performance be matched.

Four rotor Wankel engine (KE-413, left) and the unit installed in Herr Wankel’s 350 SL.

Yet however successful the proof of concept may have been, the early skepticism mentioned by the combustion chamber specialists was vindicated because as they pointed out the chamber was "...the central feature of the combustion engine.  The priority is to produce an optimum design so as to achieve the most favorable thermodynamic efficiency."  By that they meant "...as complete combustion of the fuel as possible” and not only was this not happening with the Wankel, their point was that fundamental aspects of the design meant it could not happen, something which manifested in high fuel consumption and difficulties in meeting the exhaust emission standards due to all the non-combusted hydrocarbons.  Modest in their demands in the early 1970s, the US regulators had already provided a decade-long roadmap which would make the rules so onerous there was then no realistic prospect the Wankel could ever be made to comply.  The engineers were confident they could produce a smooth, reliable and powerful Wankel, albeit a thirsty one, but knew they could never make it clean.  All of the factory’s W113 & R107 test-beds were scrapped when the project was cancelled but Felix Wankel’s personal R107 SL survives.  He obtained a four rotor unit from Mercedes-Benz, had it installed by technicians at his institute and in 1979, the trade journal Auto Motor und Sport published their road-test of the unique machine, reporting a 0-200 km/h (120 mph) time of 25.9 seconds and a top speed of 242 km/h (150 mph).

Citroën GS (GX) Birotor (1973-1975), Frankfurt Motor Show, August 1973.

Sometimes one gets lucky, sometimes not.  In the US, Ford introduced the new, small and economical Mustang II a few weeks before the first oil shock in 1973 and had a big hit (something sometimes forgotten by those who so decry the Mustang II and condemn it a failure).  In Australia, about the same time, Leyland announced the big new P76, a selling point its V8 engine.  The P76 wasn’t without faults and may anyway have failed but the timing didn’t help and it didn’t last long, shortly taking with it whatever remained of Leyland Australia.  In France, in October 1973, the very month in which events in the Middle East triggered the first oil shock, Citroën's thirsty GS Birotor went on sale.  Shown at the Frankfurt Motor Show in August, the reception had been generally positive, most complaints being about the aesthetic; all the Birotors appeared to be painted in shades of brown, a color which seemed to stalk the 1970s.

Mechanically though, even before going on sale, some with high hopes for the Wankel were disappointed, the Birotor not realising the promise of smaller, lighter packages.  Despite the compact size, the engine would fit in the GS’s engine bay only transversely so Citroën’s signature inboard disk brakes couldn't be used for the first time since the pre-war Traction Avant. That necessitated a different subframe, a wider track, and bigger wheel arches than the standard GS.  Combined with other detail differences, it bulked the rotary-powered GS up to 690 lb (290 kg) more than the standard GS, compelling the addition of anti-roll bars to reduce the increased propensity towards body roll.  Another mechanical aspect not much discussed at the time was the Wankel's high exhaust emissions.  In one of many possible illustrations of how the politics of the matter has changed, it was a time when the exhaust pollution rules imposed by the United States appalled Europeans because of the way they made the detoxed cars behave.  Not wishing to sacrifice power, in Europe, drivers for years enjoyed un-emasculated engines and accepted the higher emission of CO2 and other pollutants as part of life.  Widespread interest in climate change, then the concern of a handful of specialists looking at what was called the "greenhouse effect", was a generation away.  Despite cubic money being spent, it was one aspect of the Wankel that was never fixed and was the final nail in the coffin of Mazda's RX8.    

Known also as the GZ, the Birotor replaced the noisy but robust and economical air-cooled flat four used in the GS on which it was based and cost about 70% more.  The Wankel engine was the first fruit of the NSU-Citroën joint venture and, being of small capacity, attracted lower taxes than a similar piston-engined car.  However, it suffered the problems endemic to the Wankel: ruinously high fuel consumption and chronic unreliability caused by wear of the rotor seals and the damage this caused to the housing walls.  Citroën had looked at the Ro 80's issues and had included an additional oil pump to improve seal lubrication but the problems persisted.  Internal documents later revealed that just as at NSU half a decade earlier, there were those within Citroën who understood, long before the release, that a disaster was impending but a combination of corporate inertia, an unwillingness to admit failure and a number of contractual obligations meant the Birotor went on sale.  Within months the extent of the problem was realized.  Although only a few hundred had found buyers, broken ones were being towed to dealers around the country and owners were irate.  Early in 1975, Citroën dropped the model, offering to buy back all the 847 made, running or not, customers given a full-refund.  Most agreed and Citroen scrapped every one they could, hoping everyone would forget they ever existed.  A remarkable third of owners declined the offer and many survived in private hands; among Citroën aficionados they’re a collector’s item though probably more displayed as a curiosity than driven.

A twelve-rotor motor intended for marine applications.

The low weight, compact profile, small number of moving parts and very high specific output of the Wankel has always attracted engineers.  The Wankel turned out to be well suited to applications where it could be maintained at a constant speed for long periods, the problem of unburnt fuel in the exhaust substantially resolved, improving emissions and fuel consumption.  Wankels lose efficiency dramatically when they are revved up and down as they are in the normal use of a passenger car but in boats and aircraft where engine speed tends to be constant for long periods, they can work well.  In airframes especially, where weight is so critical, the inherent advantage of the vastly superior power to weight ratio can be compelling.

1989 Norton 588.

One of the many companies to purchase a licence from NSU was English motorcycle manufacturer BSA (British Small Arms) and this became the property of Norton when it absorbed BSA in 1973.  Norton’s troubled history in the 1970s had little to do with the Wankel but after bankruptcy, it was revived on more than one occasion and during one of those escapades, it made almost a thousand Wankel motorcycles.  Other manufacturers dabbled with Wankels and Suzuki actually made some 6000 RE5s between 1974-1976 but the best of the breed were thought to be the Nortons, even though they were admitted to be early in the development cycle.  The Wankel was a more reliable thing by the time the Nortons were made but they suffered the underlying problem of all road-going applications: the advantages just weren’t enough to outweigh the drawbacks, added to which, piston engines continued to improve.  Norton allowed the project to die but did use the Wankel technology to develop a line of UAV (unmanned aerial vehicles, sometimes called drones) engines that proved successful; weighing only 22 lb (8.2 KG) yet producing 38 bhp (28 kw) they proved ideal for the task.

1972 Chevrolet Corvette XP-895 Prototype.

In 1972, spooked a bit by the news Ford would be offering the mid-engined De Tomaso Pantera through Lincoln-Mercury dealers, to steal a bit of the thunder, Chevrolet dusted-off and displayed a mid-engined Corvette prototype, production of which had been cancelled because of the cost.  It was shown again in 1973, this time with a four-rotor version of the Wankel GM had been developing in a number of configurations.  After the Wankel project was aborted, there were plans to use the body with a V8 to replace the existing Corvette, a release penciled in for 1980 but again, costs and concerns about sales potential aborted the idea.  It meant the already long-serving Corvette stayed in the line for fifteen years, not replaced until 1983 and not until well into the next century was a mid-engined version released.

Thursday, June 22, 2023

Gullwing & Gull-wing

Gullwing & Gull-wing (pronounced guhl-wing)

(1) In aviation, an airplane wing that slants briefly upward from the fuselage and then extends horizontally outward (ie a short upward-sloping inner section and a longer horizontal outer section).

(2) Of doors, a door hinged at the top and opening upward (applied usually to cars but can be used in aviation, aerospace and architecture).

(3) Anything having or resembling (extended and partially extended) wings of a gull (and many other birds).

(4) In electronic hardware, a type of board connector for a small outline integrated circuit (SOIC).

(5) In historic admiralty jargon, a synonym of goose wing (a sail position).

Gull is from the Middle English gulle, from the Brythonic, from the Proto-Celtic wēlannā (seagull) and was cognate with the Cornish guilan, the Welsh gwylan, the Breton gouelan and the Old Irish faílenn.  The noun Gull was used (in a cook-book!) to describe the shore bird in the 1400s, probably from the Brythonic Celtic; it was related to the Welsh gwylan (gull), the Cornish guilan, the Breton goelann; all from Old Celtic voilenno-.  Gull replaced the Old English mæw.

The verb form meaning “to dupe, cheat, mislead by deception" dates from the 1540s, an adaptation by analogy from the earlier (1520) meaning "to swallow", ultimately from the sense of "throat, gullet" from the early 1400s.  The meaning was the idea of someone so gullible to “swallow whatever they’re told”.  As a cant term for "dupe, sucker, credulous person", it’s noted from the 1590s and is of uncertain origin but may be from the verb meaning "to dupe or cheat".  Another possibility is a link to the late fourteenth century Middle English gull & goll (newly hatched bird" which may have been influenced by the Old Norse golr (yellow), the link being the hue of the bird’s down.

Wing was from the late twelfth century Middle English winge & wenge (forelimb fitted for flight of a bird or bat), applied also to the part of certain insects which resembled a wing in form or function, from the Old Norse vængr (wing of a bird, aisle etc) from the Proto-Germanic wēinga & wēingan-.  It was cognate with the Danish vinge (“wing”), the Icelandic vængur (wing), the West Frisian wjuk (wing) and the Swedish vinge (“wing”), of unknown origin but possibly from the Proto-Germanic we-ingjaz ( a suffixed form of the primitive Indo-European root we- (blow), source of the Old English wawan (to blow).  It replaced the native Middle English fither, from the Old English fiþre & feðra (plural (and related to the modern feather)) from the Proto-Germanic fiþriją, which merged with fether, from the Old English feþer, from the Proto-Germanic feþrō).  The meaning "either of two divisions of a political party, army etc dates from circa 1400; the use in the architectures was first recorded in 1790 and applied figuratively almost immediately.  The slang sense of earn (one's) wings is 1940s, from the wing-shaped badges awarded to air cadets on graduation. To be under (someone's) wing "protected by (someone)" is recorded from the early thirteenth century; the phrase “on a wing and a prayer” is title of a 1943 song about landing a damaged aircraft.

A Gull in flight (left), inverted gull-wing on 1944 Voight Corsair (centre) & gull-wing on 1971 Piaggio P.136 (Royal Gull) (right).

In aviation, the design actually pre-dates powered flight (1903) by half a millennium, appearing in the speculative drawings of flying machines by Leonardo da Vinci (1452-1519) and others, an inevitable consequence of being influenced by the flapping wings of birds.  There were experiments, circa 1911, to apply the gull-wing principle to some of the early monoplanes in a quest to combine greater surface area with enhanced strength but it wasn’t until the 1920s it began widely to be used, firstly in gliders for some aerodynamic advantage and later, powered-aircraft.  In powered aircraft, the gull-wing offered little aerodynamically but had structural advantages in that it allowed designers more easily to ensure (1) increasingly larger propellers would have sufficient clearance, (2) undercarriage length could be reduced (and consequently strengthened) and (3) wing-spans could slightly be reduced, a thing of great significance when operations began on aircraft carriers, the gull-wing being especially suited to the folding-wing model.  Depending on the advantage(s) sought, designers used either a classic gull-wing or the inverted gull-wing.  The correct form is for all purposes except when applied to the the (1954-1957) Mercedes-Benz 300 SL coupé is the hyphenated gull-wing; only the 1950s Mercedes-Benz are called Gullwings.

1945 Jamin-Bouffort JB.

Cars with gull-wing doors had been built before Mercedes-Benz started making them at scale and the principle was known in both aviation and marine architecture.  One was the 1945 Jamin-Bouffort JB, the creation of French aeronautical engineer Victor-Albert Bouffort (1912-1995) who had a long history of clever, practical (and sometimes unappreciated) designs.  The Jamin-Bouffort JB was a relatively small three-wheeler built using some of the techniques of construction used in light aircraft, the gull-wing doors the most obvious novelty.  Anticipating the 1950s boom in micro-cars, there was potential but with European industry recovering from the war, most effort was directed to resuming production of pre-war vehicles using surviving tooling and there was little interest in pursuing anything which required development time.  Monsieur Bouffort would go on to design other concepts ahead of their time, some of his ideas adopted by others decades after his prototypes appeared.

Bugatti Type 64 with gull-wing body fabricated using original conceptual sketches on 1939 Type 64 chassis.

In 1939, Jean Bugatti drew up plans for the Type 64, a vehicle with gull-wing doors, his sketches an example of the great interest being shown by European manufacturers in aerodynamics, then called usually streamlining.  Although two Type 64s were completed in 1939, neither used the gull-wing doors and it would be another eighty-odd years before Bugatti’s design was realised when collector & president of the American Bugatti Club, Peter Mullin (b 1941), arranged the fabrication of the coachwork, based on the original drawings.  Built in exactly the same way craftsmen would have accomplished the task in 1939, the body was mounted on the surviving Type 64 chassis (64002), united for the first time with what Jean Bugatti called papillon (butterfly) doors which all (except the French) now call gull-wings.

Mercedes-Benz and the gull-wing.

1952 Mercedes-Benz 300 SL prototype (W194).

By 1951, although the Wirtschaftswunder (the post-war German “economic miracle”) still lay ahead, structural changes (the most important being the retreat by the occupying forces in the western zones from the punitive model initially adopted and the subsequent creation in 1948 of the stable deutschmark), had already generated an economy of unexpected strength and Mercedes-Benz was ready to make a serious return to the circuits.  Because the rules then governing Formula One didn’t suit what it was at the time practical to achieve, the first foray was into sports car racing, the target the ambitious goal of winning the Le Mans 24 hour race, despite a tight budget which precluded the development of new engines or transmissions and dictated the use of as much already-in-production as possible.

1952 Mercedes-Benz 300 SL prototype (W194).

It was the use of a production car engine designed not for ultimate power but smoothness, reliability and a wide torque band which ultimately dictated the use of the gull-wing doors.  The engine was the 3.0 litre (183 cubic inch) M186 straight-six used in the big 300 limousines and its two door derivatives, of advanced design by the standards of the time but also big, tall and heavy, attributes not helpful to race-car designers who prefer components which are compact, light and able to be mounted low in a frame.  A new engine not being possible, the factory instead created a variation, the M194, which used the triple-carburetor induction of the 300S coupés in an improved cylinder head, the innovation being the iron-block now lying at a 50o angle, thereby solving the problem of height by allowing it to be installed while canted to the side, permitting a lower bonnet line.  Using the existing gearbox, it was still a heavy engine-transmission combination, especially in relation to its modest power-output and such was the interest in lightness that, initially, the conventional wet-sump was retained so the additional weight of the more desirable dry-sump plumbing wouldn’t be added.  It was only later in the development-cycle that dry-sump lubrication was added.

1952 Mercedes-Benz 300 SL space-frame (W194).

The calculations made suggested that with the power available, the W194 would be competitive only if lightness and aerodynamics were optimized.  Although the relationship between low-drag and down-force were still not well-understood, despite the scientific brain-drain to the US and USSR (forced and otherwise) in the aftermath of the war, the Germans still had a considerable knowledge-base in aerodynamics and this was utilized to design a small, slippery shape into which the now slanted straight-six would be slotted.  There being neither the time nor the money to build the car as a monocoque, the engineers knew the frame had to be light.  A conventional chassis was out of the question because of the weight and they knew from the pre-war experience of the SSKL how expensive and difficult it was to reduce mass while retaining strength.  The solution was a space-frame, made from tubular aluminum it was light, weighing only between 50-70 kg (110-155 lb) in it’s various incarnations yet impressively stiff and the design offered the team to opportunity to use either closed or open bodies as race regulations required.

However, as with many forms of extreme engineering, there were compromises, the most obvious of which being that the strength and torsional rigidity was in part achieved by mounting the side tubes so high that the use of conventionally opening doors was precluded.  In a race car, that was of no concern and access to the cockpit in the early W194s was granted by what were essentially top-hinged windows which meant ingress and egress was not elegant and barely even possible for those of a certain girth but again, this was though hardly to matter in a race car.  In this form, the first prototypes were built, without even the truck-like access step low on the flanks which had been in the original plans.

1952 Mercedes-Benz 300 SL production coupé (W194).

Actually, it turned out having gull-wing windows instead of gull-wing doors did matter.  Although the rules of motorsport’s pettifogging regulatory body, the Fédération Internationale de l'Automobile (the FIA; the International Automobile Federation) were silent on the types and direction of opening doors and, in the pre-war era they had tolerated some essentially fake doors, their scrutineers still raised objections during inspection for the 1952 Mille Miglia.  The inspectors were forced to relent when unable to point to any rule actually being broken but it was clear they’d be out for revenge and the factory modified the frame to permit doors extending down the flanks, thereby assuming the final shape which would come to define the gull-wing door.  Relocating some of the aluminum tubing to preserve strength added a few kilograms but forestalled any retrospective FIA nit-picking.  To this day, the FIA's legions of bureaucrats seem not to realise why they’ve for so long been regarded as impediments to competition and innovation.

Le Mans, 1952.

First tested on the Nürburgring and Hockenheimring in late 1951, the W194, now dubbed 300 SL for promotional purposes, was in March 1952 presented to the press on the Stuttgart to Heilbronn autobahn.  In those happy days, there was nothing strange about demonstrating race cars on public highways.  The SL stood for Super Leicht (super light), reflecting the priority the engineers had pursued.  For decades, it was said by many, even normally reliable sources, that it stood for sports Sports Leicht (sports light), and the history of the Mercedes-Benz alphabet soup was such that it could have been either way (the SSKL of 1931 was the (Super Sports Kurz (short) Leicht (light)) and from the 1950s on even the factory used both Sports Leicht and Super Leicht.  It was only in 2017 it published a 1952 paper discovered in the corporate archive confirming the correct abbreviation is Super-Leicht.  Ten W194s were built for the 1952 season and success was immediate, second in the Mille Miglia; a trademark 1-2-3 result in the annual sports car race in Bern and, the crowning achievement, a 1-2 finish in the twenty-four hour classic at Le Mans.

Neither usually the most powerful nor the fastest car in the races it contested, the 300 SL nevertheless so often prevailed because of a combination of virtues.  Despite the heavy drive-train, it was light enough not to impose undue stress on tyres, brakes or mechanical components, the limousine engine was tough and durable and the outstanding aerodynamics returned surprising good fuel economy; in endurance racing, reliability and economy compensate for a lot of absent horsepower.

Nürburgring, 1952.

After the triumph at Le Mans, the SL won at the Eifelrennen and was then entered into in a race on the Nürburgring and to shed some weight, engineers converted three of the coupés to roadsters, emulating the body of one of the original ten which had been open-topped from the start.  To avoid any unpleasantness with the FIA, the section of the doors extending into the side of the car was retained and a smaller windscreen was installed to improve aerodynamics and afford the driver some protection from the weather and bugs unfortunate enough to be caught in the path.  The roofectomy reduced weight by about 100 kg (220 lb) which presumably helped, the four finishing in the first four places.

Winning W194, 1952 Carrera Panamericana Mexico, the metal struts were an ad-hoc addition after a bird strike.

One final adventure for the year yielded a perhaps unexpected success.  In November 1952, the factory entered two coupés and two roadsters in the third Carrera Panamericana Mexico, a race of 3100 kilometres (1925 miles) over five days and eight stages, their engines now bored out to 3.1 litres (189 cubic inches) increasing power from 175 bhp (130kw) to 180 (135).  The cars finished 1-2-3 although the third was disqualified for a rule violation and the winning car endured the intrusion at speed of a vulture through the windscreen.  Unlike the 300 SL, the unlucky bird didn’t survive.  There was however one final outing for the W194.  In 1955 it won the Rally Stella Alpina, the last time the event would be run in competitive form, one of many cancelled in the wake of the disaster at Le Mans that year in which 84 died and almost two-hundred injured.  Coincidently, that accident involved the W194’s successor, the 300 SLR.

1953 300 SL Prototype.

The 300 SL was re-engineered for the 1953 season, the bodywork now made from magnesium, lighter even than aluminum, the design of which had seen the car return to the wind-tunnel after which it gained a revised front section which not only reduced drag but also improved cooling by optimizing airflow to the radiator and engine compartment.  Power rose too.  Again drawing from wartime experience with the DB60x V12 aero-engine used in many German warplanes, direct fuel-injection was introduced which boosted output from 180 bhp (135 kw) to 215 bhp (158 kW).  Nor were the underpinnings neglected, the rear suspension design improved (somewhat) with the addition of the low-pivot single-joint swing axle (which would later appear on some production 300 SLs) while the transmission was flanged on the rear axle, not quite a transaxle but much improving the weight distribution.  The wheelbase was shortened by 100 millimetres (4 inches) and 16-inch wheels were adopted.  Even disk brakes were considered but the factory judged them years from being ready and it wouldn’t be until 1961 that they appeared on a Mercedes-Benz, more than half a decade after others had proved the technology on road and track.  There was however one exception to that, a disc brake had been installed between propeller shaft and differential on the high-speed truck built in 1954 to carry the Grand Prix cars between the factory and circuits in Europe.

The revised 300 SL however was never raced, the factory’s attention now turning to the Formula One campaign which, with the W196, would so successfully be conducted in 1954-1955, an off-shoot of which would be the W194’s replacement, the W196S sports car which would be based on the Grand Prix machine and dubbed, a bit opportunistically, the 300 SLR (Sport Leicht Rennen (Sport Light-Racing)).  Such was the impression made by the futuristic W194 that it would inspire production of the road-going 300 SL Gullwing (W198), 1400 of which were built during 1954-1957 (including 29 with aluminium bodies).

1955 Mercedes-Benz 300 SL (W194) (1954-1957).

Although the public found them glamorous, the engineers at Mercedes-Benz had never been enamoured by the 300 SL’s gull-wing doors, regarding them a necessary compromise imposed by the high side-structure of the space-frame which supported the body.  Never intended for use on road-cars, it was the guarantee of the US importer of Mercedes-Benz to underwrite the sale of a thousand gull-wing coupés that saw the 300 SL Gullwing enter production in 1954.  The sales predictions proved accurate and of the 1400 built, some eighty percent were delivered to North American buyers.  The W198 300SL was the model which became entrenched in the public imagination as “the Gullwing” and it’s the only instance where the word doesn’t need to be hyphenated.  Glamorous those doors may have been, they did impose compromises.  The side windows didn’t roll down, ventilation was marginal and air-conditioning didn’t exist; in a hot climate, one really had to want to drive a Gullwing.  There was also the safety issue, some drivers taking the precaution of carrying a hammer in case, in a roll-over, the inability to open the doors made the windscreen the only means of escape and roll-overs were perhaps more likely in a Gullwing than many other machines, the behavior of the swing axles sometimes inducing unwanted behavior in what was one of the fastest cars on the road although, in fairness, on the tyres available in the 1950s that was less of an issue than it would become on later, stickier rubber.

Mercedes-Benz 300 SLR (W196S), Stirling Moss & Denis Jenkinson, Mille Miglia, Italy, 1955.

The 300 SLR (W196S) was a sports car, nine of which were built to contest the 1955 World Sportscar Championship.  Essentially the W196 Formula One car with the straight-eight engine enlarged from 2.5 to 3.0 litres (152 to 183 cubic inches), the roadster is most famous for the run in the 1955 Mille Miglia in Italy which was won over a distance of 992 miles (1597 km) with an average speed of almost 100 mph (160 km/h); nothing like that has since been achieved.  There's infamy too attached to the 300 SLR; one being involved in the catastrophic crash and fire at Le Mans in 1955.

1955 300 SLR (W196S “Uhlenhaut” coupé). 

Two of the 300 SLRs were built with coupé bodies, complete with gull-wing doors.  Intended to be used in the 1955 Carrera Panamericana Mexico, they were rendered instantly redundant when both race and the Mercedes-Benz racing programme was cancelled after the Le Mans disaster.  The head of the programme, Rudolf Uhlenhaut (1906-1989), added an external muffler to one of the coupés, registered it for road use (such things were once possible when the planet was a happier place) and used it for a while as his company car.  It was then the fastest road-car in the world, an English journalist recording a top speed of 183 mph (295 km/h) on a quiet stretch of autobahn but Herr Uhlenhaut paid a price for the only partially effective muffler, needing hearing aids later in life.  Two were built (rot (red) & blau (blue), the names based on their interior trim) and for decades they remained either in the factory museum or making an occasional ceremonial appearance at race meetings.  However, in a surprise announcement, in June 2022 it was revealed rot had been sold in a private auction in Stuttgart for a world-record US$142 million, the most expensive car ever sold.  The buyer's identity was not released but it's believed rot is destined for a collection in the Middle East.  It's rumoured also the same buyer has offered US$100 million should an authentic 1929 Mercedes-Benz SSKL ever be uncovered.  

1970 Mercedes-Benz C-111 (1968-1970 (Wankel versions)).

Although the C-111 would have a second career in the late 1970s in a series of 5-cylinder diesel and V8 petrol engined cars used to set long-distance endurance records, its best remembered in its original incarnation as the lurid-colored (safety-orange according to the factory) three and four-rotor Wankel-engined gullwing coupés, sixteen of which were built.  The original was a pure test-bed for the Wankel engine in which so many manufacturers once had so much hope.  The first built looked like a failed high-school project but the second and third versions were both finished to production-car standards with typically high-quality German workmanship.  Although from the school of functional brutalism rather than the lovely things they might have been had styling been out-sourced to the Italians, the gull-winged wedges attracted much attention and soon cheques were enclosed in letters mailed to Stuttgart asking for one.  The cheques were returned, apparently there had never been plans for production even had the Wankel experiment proved a success.  The C-111 was fast, the four-rotor version said to reach 300 km/h (188 mph), faster than any production vehicle then available.

1991 Mercedes-Benz C112.

The C112 was an experimental mid-engined concept car built in 1991.  Designed to be essentially a road-going version of the Sauber-built C11 Group C prototype race car developed for the 1990 World Sports-Prototype Championship, it was powered by the 6.0 litre (366 cubic-inch) M120 V12 used in the R129 SL and C140/W140 S-Class variously between 1991-2001.  The C112 does appear to have been what the factory always claimed it was: purely a test-bed for technologies such as the electronically-controlled spring & damper units (which would later be included on some models as ABC (active body control)), traction control, rear wheel steering, tyre-pressure monitoring and distance-sensing radar.  As an indication it wasn't any sort of prototype intended for production, it offered no luggage space but, like the C111 twenty years earlier, it’s said hundreds of orders were received.  It was 1991 however and with the world in the depths of a severe recession, not even that would have been enough for a flirtation with thoughts of a production model.  After the C112, thoughts of a gull-wing were put on ice for another two decades, the SLR-McLaren (2003-2009) using what were technically “butterfly” door, hinged from the A-pillars.

2011 Mercedes-Benz SLS-AMG (2101-2014).

The factory’s most recent outing of the gull-wing door, the SLS, which used the naturally aspirated 6.2 litre (379 cubic inch) M159 DOHC V8, was produced between (2010-2014), a roadster version also available.  To allay any doubt, it was announced at the time of release that SLS stands for Super Leicht Sport (Super Light Sport) although such things are relative, the SLS a hefty 1600-odd kg (3,500 lb) although, in fairness, the original Gullwing wasn’t that much lighter and the SLS does pack a lot more gear, including windows which can be opened and air-conditioning.  In the way of modern marketing, many special versions were made available during the SLS’s relatively short life, even an all-wheel-drive electric version with a motor for each wheel.  Such is the lure of the gull-wing motif for Mercedes-Benz, it’s unlikely the SLS will be the last and a high-priced revival is expected to become a feature of the marketing cycle every couple of decades but we're unlikely to see any more V8s or V12s unless perhaps as a swan-song, AMG indicating recently they expect their 4.0 litre (244 cubic inch) V8 to remain in production for another ten years, Greta Thunberg (b 2003) and her henchmen the humorless EU bureaucrats permitting.

Lindsay Lohan at the Nicholas Kirkwood catwalk show, London Fashion Week 2015 with a prop vehicle (one of the gull-wing DMC DeLoreans modified closely to resemble the one used in the popular film Back to the Future (1985)).

Tesla Model X with falcon-wing doors.

Such was the allure of the 300 SL’s gull-wing doors that in the shadow they’ve cast for seventy-odd years, literally dozens of cars have appeared with the features, some of questionable aesthetic quality, some well-executed and while most were one-offs or produced only in small runs, there’s been the occasional (usually brief) success and of late some Teslas have been so equipped and with the novelty of them being the back doors, the front units conventionally hinged.  Tesla calls them “falcon wings” because the design was influenced by the bird.  However, the biomimicry was (for obvious reasons) not an attempt to gain the aerodynamic advantages of the falcon’s wing shape which affords exceptional maneuverability in flight but simply an adoption of the specific bone structure.  Unlike the fixed structure of the classic gull-wing door, the Tesla’s falcon-wing is fitted with an additional central joint which permits them to be opened in cramped spaces, aiding passenger ingress and egress.  Some Tesla engineers have however admitted the attraction of them as way to generate publicity and (hopefully) attract sales may have been considered during the design process.

Bricklin SV-1 (1974-1975, left) and DMC DeLorean (1981-1983, right).

Two of the best known of the doomed gull-wing cars were the Bricklin SV1 and the DeLorean, both the creations of individuals with interesting histories.  Malcolm Bricklin’s (b 1939) first flirtation with the automotive business was his introduction into the US market of the Subarus, built by the Japanese conglomerate Fuji Heavy Industries.  Having successfully imported the company’s scooters for some years, the model Mr Bricklin in 1968 chose was the 360, a tiny, egg-shaped device which had been sold in Japan for a decade, the rationale underlying his selection being it was so small and light it was exempt from just about any regulations.  Although really unsuited to US motoring conditions it was (at US$1300) several hundred dollars cheaper than a Volkswagen Beetle and had a fuel consumption around a third that delivered by the even the more economical US-built cars so it found a niche and some ten-thousand were sold before that gap in the market was saturated.  Ever imaginative, Mr Bricklin then took his hundreds of unsold 360s and re-purposed them essentially as large dodgem-cars, renting unused shopping-mall car-parks as ad-hoc race tracks and offering “laps” for as little as $US1.00.  He advertised “no speed limits” to attract the youth market but given the little machines took a reported 56 seconds for the 0-60 mph (0-100 km/h) run, reaching the legal limit in a car-park would have been a challenge.  Mr Bricklin achieved further success with Subaru’s more conventional (in a front wheel drive (FWD) context) 1000 and the corporation would later buy out his US interests for was thought to be a most lucrative transaction for both parties.

1969 Subaru 360 Deluxe.

His eponymous gull-winged creation was the SV-1 which, although nominally positioned as a “sports car” was marketed also as a “safety-vehicle” (hence the SV).  It certainly contained all of the safety features of the time and in that vein was offered mostly in lurid “high visibility” colors although the prototypes for an up-market “Chairman” version were displayed in more restrained black or white.  It was ahead of its time in one way, being fitted with neither ash-trays nor cigarette lighters, Mr Bricklin not approving of smoking and regarding the distractions of lighting-up while at the wheel a safety hazard.  Whether in stable conditions the car could have succeeded is speculative but the timing was extraordinarily unlucky.  The V8-powered car arrived on the market in 1974 shortly after the first oil shock saw a spike in the price of gasoline and in the midst of the recession and inflation which followed in the wake of that.  Between its introduction and demise, the costs of the SV1 more than doubled and there were disruptions to the production process because supply problems (or unpaid bills depending on who was asked) meant the AMC engine had to be replaced with a Ford power-plant.  By the time production ended, some 3000 had been built, but, not discouraged, Mr Bricklin would go on to import Fiat sports cars and the infamous Yugo before being involved with a variety of co-ventures with Chinese partners.

1970 Pontiac GTO.

John DeLorean (1925–2005) was a genuinely gifted engineer who emerged as one of the charismatic characters responsible for some of the memorable machines General Motors (GM) produced during its golden age of the 1950s & 1960s.  Under Mr DeLorean’s leadership, Pontiac in 1964 released the GTO which is considered (though contested by some) the first “muscle car” and the one responsible for the whole genre which would flourish for a crazy half-dozen years and in 1969 the Grand Prix which defined a whole market segment.  Apparently, the Grand Prix, produced at a low cost and sold at a high price was one of the most profitable lines of the era.  Given this, Mr DeLorean expected a smooth path to the top of GM but for a variety of reasons there were internal tensions and in 1973 he resigned to pursue his dream of making his own car.  It took years however to reach fruition because the 1970s were troubled times and like the Bricklin SV1, the DeLorean Motor Company’s (DMC) gull-winged DeLorean was released into a world less welcoming then had been anticipated.  By 1981, the world was again in recession and the complicated web of financing arrangements and agreements with the UK government to subsidize productions could have worked only if the design was good, demand was strong and the product was well-built, none of which was true.

1969 Pontiac Grand Prix 428 SJ.

As the inventory of unsold cars grew, so did the debt and desperate for cash, Mr DeLorean was persuaded (apparently without great difficulty) to become involved in the cocaine trafficking business which certainly offered fast money but his co-conspirator turned out to be an FBI informant who was a career criminal seeking a reduced sentence (on a unrelated matter) by providing the bureau with “a big scalp”.  At trial in 1984, Mr DeLorean was acquitted on all charges under the rule of "entrapment" but by then DMC was long bankrupt.  In the years since, the car has found a cult following, something due more to its part in the Back to the Future films than any dynamic qualities it possessed.  It was competent as a road car despite the rear-engine configuration and the use of an uninspiring power-plant but, apart from the stainless-steel bodywork and of course the doors, it had little to commend it although over the years there have been a number of (ultimately aborted) revivals and plans remain afoot for an electric gull-wing machine using the name to be released in 2024 or 2025.